Инсталирайте Steam
вход
|
език
Опростен китайски (简体中文)
Традиционен китайски (繁體中文)
Японски (日本語)
Корейски (한국어)
Тайландски (ไทย)
Чешки (Čeština)
Датски (Dansk)
Немски (Deutsch)
Английски (English)
Испански — Испания (Español — España)
Испански — Латинска Америка (Español — Latinoamérica)
Гръцки (Ελληνικά)
Френски (Français)
Италиански (Italiano)
Индонезийски (Bahasa Indonesia)
Унгарски (Magyar)
Холандски (Nederlands)
Норвежки (Norsk)
Полски (Polski)
Португалски (Português)
Бразилски португалски (Português — Brasil)
Румънски (Română)
Руски (Русский)
Финландски (Suomi)
Шведски (Svenska)
Турски (Türkçe)
Виетнамски (Tiếng Việt)
Украински (Українська)
Докладване на проблем с превода
1) Angle of the velocity vector relative to the atmosphere when re-entry starts.
2) The drag of the reentering craft, including taking into account the attitude of the craft throughout re-entry.
3) The atmospheric model used.
It is possible to come up with a workable solution for a specific craft reentering on a highly similar trajectory, especially if you have active guidance during re-entry -- this is how the various Falcon-9 and Starship recreations work. But a general solution isn't possible.
If you are trying to land at a specific spot and calculate a deorbit burn, the best solution i have to offer right now is an iterative process -- reduce the orbital velocity vectors magnitude until a point of impact exists, then rotate the velocity vector until the point of impact lines up with the orbital plane. Repeat until the point of impact is correct.
All up, it was likely a month of calendar time, but i wasn't working on it full time. Maybe 40 man hours?