Workers & Resources: Soviet Republic

Workers & Resources: Soviet Republic

110 ratings
The heating system - Surviving winter
By Total Oh No
This guide will hopefully give you enough information about the game's heating system that you can set up a heating network to survive the snowy embrace of winter.
By now there is also an ingame tutorial for the system, but this guide will give you more detailed information.
9
   
Award
Favorite
Favorited
Unfavorite
Introduction
The heating system in W&R works very similarly to the electricity system.
You have a heat plant where workers burn coal to create heat in form of hot water. You pipe this hot water around using pipelines that are ultimately connected to heat exchanger buildings, which function pretty much like electrical substations and deliver the heat water to all buildings in a radius around them.

Heating will only be required in your game, when you have both seasons and power management enabled in your game settings.

Note that old city houses, which you can find pre-existing on maps, can heat themselves, however, they will produce a small amount of pollution around them when they do it.

And yes, you're gonna need to heat your grocery stores, schools, etc, too. Other work places like factories, mines, quarries, fields, woodcutters and construction sites don't need to be heated.

The range of heat exchangers is a square area alligned to the grid, like substations, but their range is actually larger than that of substations. 380m-536m.
Basic Information
When you click on a building that requires heating, you will find these two gauges at the bottom of its info screen:


Room temperature - Below 15°C people will get happiness penalties, even lower and it becomes a severe danger to their health. You should try to always have it maxed at 24°C.

The round gauge on the right actually gives you two different pieces of information:
The capacity of the building's heat water tank - Measured in m³, L for buildings and hL for pipelines. 1 m³ = 1000 L = 10 hL. It's kinda similar to wattage.
The temperature of the building's heat water - The hotter this is, the easier it will be to heat the building's room temperature.
Heat Water Tank Capacity
The water tank capacity value serves a similar purpose to wattage in the electricity system.
Every building that can be heated has a built in heat water tank with a volume depending on the size of the building. You can see the building's tank volume written inside the water tank gauge and in the tooltip when selecting the building for construction.
Heat plants and heat exchangers also have values for water tank volume, but these tell you how much volume of water the plant and exchanger can heat efficiently.

To check if you are trying to heat more than what your exchanger or plant are capable of, you need to click on all the buildings that your exchanger/plant is connected to, sum up all the tank volumes of these buildings and then compare the total number to the capacity of your exchanger/plant.

Here is an example. This big heat exchanger is connected to a couple flats, a kindergarten, hospital and a big shopping centre. The combined water tank volume of these buildings is 129 m³, which is less than the exchanger's capacity of 300 m³. See how this tiny district would already be too much volume for a small heat exchanger.

Keep in mind that water tank capacity is not the only factor that determines if your heating network is capable of heating your buildings. It doesn't 100% guarantee maximum water temperature in all situations, but it is a useful guideline that you shouldn't ignore.
Heat Water Temperature
The heat water temperature can go up to 90°C. In the best case, you want this to always be as high as possible, but even if it isn't at the maximum, it likely will still be able to get the room temperature high enough anyway.
You need to keep two things in mind:

First, it takes time for your heat water network to heat up. That means you can't just hook up a heating plant and expect all connected buildings to immediately be livable. In other words, you need to be ready BEFORE winter. Trying to kickstart a heating system during winter requires you to throw a lot of bodies at the problem.

Second, if you see that your water temperatures are really good in summer, it doesn't mean that you are necessarily prepared for winter. Outside temperature has a big impact on the ability for your heat plants to heat up the water. If you set up your heating in an inadequate way, it might take until winter for you to realise it. And by then you might already be trapped in a death spiral.

The way the temperature of the heat water is calculated is actually pretty complex and depends on many factors. The water tank capacity, the outside temperature, the heating power of the heat plant, the power consumption of the buildings, etc.
Pipelines, Pumping Stations and Bottlenecks
Pipelines come in two sizes, small and big. The small ones handle 100 m³ of water (same as a small heat exchanger) and the big ones 300 m³ (same as a big heat exchanger). Small pipelines can actually be connected to big pipeline connectors, too, but it is recommended that you use big pipelines whenever its possible.

Pipelines have a maximum range of 1 km, but pumping stations can be used to extend this range.

Be careful with bottlenecks. Don't use a pumping station to connect three big heat exchangers to a single big pipeline. This would severely limit the heating power of your heat network.
Don't do this, this is a bottleneck:

Instead, make sure that you have 1 pipeline per heat exchanger, like this:

Here two pipes enter and exit a pumping station. As far as I can tell, this is also fine for the most part, but the pumping station will potentially make heating the water take a little longer.
I can't fully guarantee that this setup really works without problems though. It might possibly be affected by a bug currently. If you're doing this and feel that you are bottlenecked, then try building a second pump station instead of having two pipes go through one station:

In this example, I'm dividing a big pipeline up into 3 small pipelines, this is also okay to do, but keep in mind that you shouldn't really be heating your city with small heat exchangers, unless it's a very rural city:
Heating Plants
Heating plants consume coal and also come in two sizes, small and big. A small heating plant has a water tank capacity of 210 m³, which is enough for slightly more than 2 small heat exchangers. A big one has 1050 m³, which is enough for slightly more than 3 big heat exchangers as well as 1 small one.
Just like power plants though, heating plants also function as a heat exchanger themselves for buildings that are close to them. Be wary of that, when you try to calculate how much water volume a plant is connected to in total.
It is recommended that you use the big heating plant and big heat exchangers to heat your cities, but small ones might be good enough for industry and rural towns.

It is very important that your heating plant is always supplied with workers, just like your power plant. If your heating plant or power plant ever run out of workers, the temperature of your heat water is going to decrease and this can potentially turn into a very deadly problem.
Try bringing workers to these plants using lots of small microbuses to ensure there's always someone working. Alternatively you could try a cableway. Cableways are surprisingly good at supplying work places with a steady stream of workers.

Another thing to mention is that the heat production of the heat plant is measured in gigajoules, but in my opinion, you can just ignore that. The better indicator to pay attention to is the heat water tank capacity.
Summary
1. Be prepared. Set up your heating network while it's still warm outside.
2. Avoid pipeline bottlenecks. Give each exchanger their own pipeline connection to the heat plant.
3. Don't go over the water tank capacity. If your heat exchanger or heat plant are connected to more water tank volume than their capacity, build additional ones.
4. Always have workers in your heat plant. Same with your power plant.
22 Comments
Supersofty Apr 3 @ 3:58pm 
What i dont understand is that Power Plants dont produce hot water for heating. Is there a mod to fix it?
Total Oh No  [author] Feb 7 @ 1:13pm 
Keep in mind this guide was written when winter was still new in W&R. It might be inaccurate in some way at this point.
Hönse Gaming Feb 7 @ 1:39am 
Glad I found this. I'm still a noob, so trial and error (?) Is my thing. Finaly reached the point to to opening a smaller city of 8k citizens, just to find out heating was none existing. Requireing 3 large exchangers running at 99%, and 2 pumping station to reach from the plant, besides the obvious bottleneck, the last
pump station (which is where the bottleneck starts on output, but input is fine) didn't even reach 50% heating water. The heating plant is about 2km away and have no issue running at all.

Doing some rl research.. it seem unrealisticly underpowered compared to heatingplants rl that can heat over 50.000 homes at anywhere from 2-40km distance
Overlord Jul 9, 2023 @ 12:26pm 
Do you have any dumbproof tutorial for electricity? I would like to see that. This tutorial is great :)
Stehlify Jun 12, 2023 @ 1:31pm 
Ye, but I've had 1 heat exchanger which got slowly overrun. I've built next one, but noone is connected to the new one and everyone is still connected to the first one. How to switch the connections to the 2nd one?
Zyx Abacab Oct 21, 2021 @ 6:03pm 
@Total Oh No Testing on my side confirms that chaining multiple heating pumping stations reduces water temperature by at least 1/4, and sometimes by as much as 1/2, for every pumping station after the first.

I can't figure out why the amount of decrease varies, but it does.
IngoKnieto Aug 3, 2021 @ 1:49pm 
Good guide. To avoide the described bottleneck scenario seems to be extremely important.
I had two heat exchangers connected by one heat pipe (split up with a pumping station at some point) - that was not enough to heat two small cities.

Here is my failing setup - blue lines are the pipes I had, green lines are the pipes I probably should have had: https://imgur.com/6cdCp0H.jpg
Total Oh No  [author] Jun 4, 2021 @ 5:59pm 
I still need to test the pumping station stuff again. Last time I tested it, it looked kinda random, sometimes it would affect the temperature, sometimes it wouldn't. It looked like there might potentially be something bugged about it.
DuckR0ll3R May 15, 2021 @ 6:12pm 
My observation is that adding a pumping station reduces the temperature in the next pumpingstation/excange with about 1/4. This means you want as few pumpingstations as possible and as straight pipes as possible in order to get as high warer temp as possible in your exchanges.
Chip Chipperson Feb 5, 2021 @ 7:35am 
I am having trouble providing enough heat to dense residential areas while also keeping the pollution distance in mind.