Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
Oh wait, that's #. My mistake. (Don't get me started on keyboards with £)
Seriously where's Ricochet 2 Gabe?
You know everybody loved the first one.
Three is the first unique prime due to the properties of its reciprocal.
Three is the aliquot sum of 4.
Three is the third Heegner number.
Three is the second triangular number and it is the only prime triangular number. Three is the only prime which is one less than a perfect square. Any other number which is n2 − 1 for some integer n is not prime, since it is (n − 1)(n + 1). This is true for 3 as well, but in its case one of the factors is 1.
Three non-collinear points determine a plane and a circle.
Three is the fourth Fibonacci number. In the Perrin sequence, however, 3 is both the zeroth and third Perrin numbers.
Three is the fourth open meandric number.
Vulgar fractions with 3 in the denominator have a single digit repeating sequences in their decimal expansions, (.000..., .333..., .666...)
A natural number is divisible by three if the sum of its digits in base 10 is divisible by 3. For example, the number 21 is divisible by three (3 times 7) and the sum of its digits is 2 + 1 = 3. Because of this, the reverse of any number that is divisible by three (or indeed, any permutation of its digits) is also divisible by three. For instance, 1368 and its reverse 8631 are both divisible by three (and so are 1386, 3168, 3186, 3618, etc..). See also Divisibility rule. This works in base 10 and in any positional numeral system whose base divided by three leaves a remainder of one (bases 4, 7, 10, etc.).
A triangle is the only figure which, if all endpoints have hinges, will never change its shape unless the sides themselves are bent.
3 is the smallest prime of a Mersenne prime power tower 3, 7, 127, 170141183460469231731687303715884105727. It is not known whether any more of the terms are prime....... AND VALVE CAN'T COUNT TO IT!