Asenna Steam
kirjaudu sisään
|
kieli
简体中文 (yksinkertaistettu kiina)
繁體中文 (perinteinen kiina)
日本語 (japani)
한국어 (korea)
ไทย (thai)
български (bulgaria)
Čeština (tšekki)
Dansk (tanska)
Deutsch (saksa)
English (englanti)
Español – España (espanja – Espanja)
Español – Latinoamérica (espanja – Lat. Am.)
Ελληνικά (kreikka)
Français (ranska)
Italiano (italia)
Bahasa Indonesia (indonesia)
Magyar (unkari)
Nederlands (hollanti)
Norsk (norja)
Polski (puola)
Português (portugali – Portugali)
Português – Brasil (portugali – Brasilia)
Română (romania)
Русский (venäjä)
Svenska (ruotsi)
Türkçe (turkki)
Tiếng Việt (vietnam)
Українська (ukraina)
Ilmoita käännösongelmasta
- "A box with a true statement is empty."
- "A box with a false statement is empty."
These can both be true since they say "a box" not "all boxes".
Blue = All Truth
White = Mixed (1st statement true, 2nd and 3rd false)
Black = All False
I think what tripped you up (from my perspective) is blue's statements. "A box with a true statement is empty" I interpret as "there is a box that has a true statement and it is empty", not that "any box with a true statement is therefore empty"
If black is lying, then all its statements can refer to itself:
- The black box is not empty.
- A box with no true statements is not empty.
- A box with more than one false statement is not empty.
Blue would then be telling the truth:
- A box with a true statement is empty (itself, or white)
- A box with a false statement is empty (white)
- The white box is empty.
White is a mixed bag:
- A box with only true statements is empty (true, white)
- The black box is empty (false)
- A box with a statement that is also on another box is empty (true if referring to white).